Magnetic Properties of RPd_3S_4 (R = Ce, Gd)

Makoto Wakeshima¹ and Yukio Hinatsu

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received January 20, 1999: in revised form March 29, 1999; accepted April 21, 1999

Magnetic properties of palladium sulfide bronzes $RPd_{3}S_{4}$ (R = Ce, Gd) are reported. They crystallize in a cubic platinum bronze type structure. Their magnetic susceptibilities were measured from 2 to 350 K. The initial magnetization and magnetic hysteresis loop were measured at 2 K by changing the applied magnetic field between -5 and 5 T. The electron paramagnetic resonance (EPR) spectrum of Gd³⁺ was also measured at room temperature. GdPd₃S₄ shows an antiferromagnetic behavior below 5.8 K. Above 10 K the magnetic susceptibility follows the Curie law, and the effective magnetic moment is determined to be 7.36 $\mu_{\rm B}$. The magnetic moment is not saturated up to 5 T and no magnetic hysteresis has been found. From the EPR measurement the g value of Gd^{3+} in $GdPd_3S_4$ is determined to be 2.00. CePd₃S₄ shows ferromagnetism below 5.8 K. The residual magnetization is only 0.39 $\mu_{\rm B}$ and the magnetic moment at 5 T is 0.83 $\mu_{\rm B}$ at 2 K. This result shows that the ground state $\Gamma_{\rm s}$ of Ce³⁺ is split into two Kramer's doublets by the crystal field. From the magnetic transition temperature of both $GdPd_3S_4$ and $CePd_3S_4$, the superexchange interaction is considered to be dominant in the magnetic interaction of these compounds. © 1999 Academic Press

INTRODUCTION

It is known that a series of lanthanide elements form sulfide bronzes with palladium, RPd_3S_4 (R = rare earths). Keszler and Ibers first synthesized LaPd_3S_4, TbPd_3S_4, and SmPd_3S_4 and found that they have an ideal NaPt_3O_4-type structure (1). They also reported that the temperature dependences of magnetic susceptibilities of TbPd_3S_4 and SmPd_3S_4 were derived from a Curie–Weiss paramagnetism for the free Tb³⁺ ion and from a van Vleck paramagnetism for the Sm³⁺ ion, respectively (1).

In their succeeding paper, Keszler *et al.* measured the magnetic susceptibilities of RPd_3S_4 (R = Pr, Sm, Tb, Ho) and found that they were paramagnetic from liquid He temperature to room temperature (2). Moreover, the electrical conductivity of LaPd_3S_4 was measured as a function of temperature between 100 and 300 K, and it was found to be

metallic (2). This metallic conduction of RPd_3S_4 was supposed to fill partially the $d_{x^2-y^2}$ bands, which were substantially dispersive in all three directions of the lattice, and predicted to be genuine three-dimensional metals (3).

The electrical conductivity of RPd_3S_4 (R = La, Nd, Eu) was reported to be metallic at temperatures between 15 and 300 K (4). From the Hall coefficient measurements, the numbers and types of carriers are determined and the formulas are suggested to be $R^{3+}(Pd_3^{2+}e^-)S_4^{2-}$ for La and Nd compounds and $Eu_{0.5}^{2+}Eu_{0.5}^{3+}(Pd_3^{2+}e_{0.5})S_4^{2-}$ for Eu compounds (4).

In this study, we synthesized palladium sulfide bronzes, RPd_3S_4 (R = Ce, Gd), of which the magnetic properties have not been reported yet, and measured their magnetic susceptibilities, magnetization, and electron paramagnetic resonance (EPR) spectra.

EXPERIMENTAL

To obtain rare-earth sulfides (Ce₂S₃ and Gd₂S₃), rareearth oxides (CeO₂ and Gd₂O₃) with 99.9% purity were heated to 1273 K in a flow of the mixed gas of CS₂ and N₂ which was obtained by bubbling the N₂ gas through liquid CS₂. The calculated amounts of rare-earth sulfides, palladium powder with 99.9% purity, and sulfur with 99.999% purity were mixed in an agate mortar. The mixture was put into a quartz tube, evacuated, and sealed. Then, the ampule was heated at 1173 K for 3 days.

Powder X-ray diffraction measurements were performed on a Rigaku powder diffractometer (RINT2200) with CuK α radiation monochromatized with curved pyrolytic graphite. The magnetic susceptibility and magnetization were measured by using a SQUID magnetometer (Quantum Design, Model MPMS). The temperature dependence of the magnetic susceptibilities was measured under both zero-fieldcooled condition (ZFC) and field-cooled condition (FC). The former was measured on heating the samples to 350 K after zero-field cooling to 2 K. The applied magnetic field was 0.1 T. The latter was measured on cooling the sample from 350 to 2 K at 0.1 T. The field dependence of the magnetization was measured at 2 K by changing the applied

¹To whom correspondence should be addressed. E-mail: wake@sci. hokudai.ac.jp.

magnetic field between -5 and 5 T. For CePd₃S₄, it was also measured at 4.5 K by changing the field between -0.3and 0.3 T. The EPR spectra were obtained at room temperature with a JEOL 2XG spectrometer for the X band (v = 9.1 GHz). The magnetic field was monitored with a proton NMR gaussmeter.

RESULTS AND DISCUSSION

Samples were obtained as powder products. By the powder X-ray diffraction measurements, both of the rare-earth palladium sulfides were found to be formed in a cubic platinum bronze type structure and their lattice parameters were determined to be 6.7099(1) and 6.6518(1) Å for CePd₃S₄ and GdPd₃S₄, respectively, which are in agreement with the previous structural data (2, 5).

Figure 1 shows the temperature dependence of the reciprocal susceptibility (χ^{-1}) of GdPd₃S₄. This compound shows typical antiferromagnetic behavior below 5.8 K. The difference in the magnetic susceptibility between the FC and ZFC is not observed. Above 10 K, a linear relationship is found in the χ^{-1} vs *T* curve. In this compound, the palladium ions have four square-planar-coordinated sulfur ions and their oxidation state is +1.67(4). One itinerant electron exists in the $d_{\chi^2-y^2}$ bands, which consist of the palladium *d* orbitals, per chemical formula (*R*Pd₃S₄). The other bands, except for the $d_{\chi^2-y^2}$ bands, are completely filled and the magnetism of the palladium ions is expected to show a Pauli paramagnetism in a low-spin configuration. So the temperature dependence of susceptibilities is derived from that of

FIG. 1. Temperature dependence of the reciprocal susceptibility (χ^{-1}) of GdPd₃S₄. The inset shows χ^{-1} near the transition temperature.

FIG. 2. Magnetization vs magnetic field curve at 2 K for GdPd₃S₄.

the gadolinium ions. The ground state of the Gd^{3+} ion is ${}^{8}S_{7/2}$ and hence the orbital angular momentum vanishes, so the crystal field does not affect the susceptibility of the Gd compound. The effective magnetic moment is calculated to be 7.36 $\mu_{\rm B}$ from the slope of the χ^{-1} vs *T* curve. This value is slightly smaller than the theoretical magnetic moment ($\mu_{\rm eff} = 7.94 \ \mu_{\rm B}$) of a free Gd³⁺ ion.

Figure 2 shows the variation of the magnetization in the field range between -5 and 5 T measured at 2 K for GdPd₃S₄. No magnetic hysteresis has been found.

Figure 3 shows the X-band EPR spectrum for GdPd₃S₄ measured at room temperature in the magnetic field swept from 0 to 800 mT. A single broad line, which is centered at 323.3 mT with a peak-to-peak linewidth of 74.9 mT, associates with the Gd³⁺ ions. This isotropic spectrum indicates that the Gd³⁺ ions are located in cubic symmetry. The g value is calculated to be 2.00, which is in good agreement with the theoretical g value (g = 2.00) of the free Gd³⁺ ion.

The temperature dependence of the reciprocal magnetic susceptibility (χ ⁻¹) and the magnetic susceptibility (χ) of CePd₃S₄ is shown in Fig. 4 and its inset, respectively. This compound shows a ferromagnetic behavior below 5.8 K. The divergence in the magnetic susceptibility between the FC and ZFC is observed below 3.6 K. In this compound, the rare-earth ions are eight-fold coordinated by sulfur ions and its symmetry is cubic. The ground state (${}^{2}F_{5/2}$) of the Ce³⁺ ion would split into a low-lying quartet (Γ_{8}) and an excited Kramer's doublet (Γ_{7}) under the crystal field of the cubic symmetry (6). Then, the temperature dependence of the magnetic susceptibility for the Ce³⁺ ion can be

FIG. 3. EPR spectrum of Gd^{3+} in $GdPd_3S_4$ at room temperature.

calculated exactly to be

$$\chi(\text{Ce}^{3+}) = \frac{N_{\text{A}}g_{J}^{2}\mu_{\text{B}}^{2}J(J+1)}{3k_{\text{B}}T} \times \frac{26 + 5e^{-\Delta_{87}/k_{\text{B}}T} + 32(k_{\text{B}}T/\Delta_{87})(1 - e^{-\Delta_{87}/k_{\text{B}}T})}{21(2 + e^{-\Delta_{87}/k_{\text{B}}T})}$$
[1]

FIG. 4. Temperature dependence of the reciprocal susceptibility (χ^{-1}) of CePd₃S₄. The inset shows χ near the transition temperature.

where N_A , g_J , μ_B , J, and Δ_{87} are Avogadro's number, the Landé g factor, the Bohr magneton, the total angular momentum, and the separation energy between Γ_8 and Γ_7 , respectively. The measured susceptibilities were fitted in the range of 10–350 K by using Eq. [1] as shown in Fig. 4 (solid line). The fitted curve is in good agreement with the experimental data. The effective magnetic moment is calculated to be 2.14 μ_B , which is smaller than the theoretical magnetic moment ($\mu_{eff} = 2.54 \ \mu_B$) of the free Ce³⁺ ion. The separation energy, Δ_{87} , is 293 cm⁻¹, which is close to those of other compounds containing the Ce³⁺ ion, for example, 278 cm⁻¹ (400 K) for CeMo₆S₈ (7) and 229 cm⁻¹ (330 K) for CeMo₆Se₈ (8).

Figure 5 shows the initial magnetization (after ZFC) and hysteresis curve of CePd₃S₄ at 2 K (open circles) and 4.5 K (closed circles) by changing the field between -0.3 and 0.3 T. The inset of Fig. 5 shows the magnetic hysteresis curve measured at 2 K by changing the field between -5and 5 T. The area of hysteresis at 2 K is quite larger than that at 4.5 K. The residual magnetization is determined to be only 0.39 $\mu_{\rm B}$ per formula unit at 2 K, which is larger than 0.18 $\mu_{\rm B}$ at 4.5 K. This very small magnetization means that the ordered state cannot be accounted for as a simple ferromagnetic state. The hysteresis curve tends to flatten at higher fields, and the magnetic moment is calculated to be 0.83 $\mu_{\rm B}$ at 5 T. This value means that the ground state of Ce³⁺ ions is a doublet and is not compatible with the Γ_8 quartet. Hence, we propose that the symmetry of the rare-earth site is slightly distorted from cubic symmetry and the ground state (Γ_8) is split into two Kramers' doublets by the crystal field. At high temperatures, the magnetic

FIG. 5. Initial magnetization (after ZFC) and magnetic hysteresis curves at 2 and 4.5 K for $CePd_3S_4$.

susceptibility can be approximated by the model that the ground state is Γ_8 and that the it is split into two doublet states of which the separation energy is very small.

A series of RPd_3S_4 compounds have metallic conductivity. For such compounds, one of some possible mechanisms which play a role in the magnetic interaction is the RKKY interaction-type indirect interaction (8). This is mediated by conduction electrons which are associated with a PdS₄ columnar chain by analogy with the magnetic mechanism of the rare-earth Chevrel sulfides, RMo_6X_8 (R = rare earths, X = S and Se) (9, 10). However, the exchange energy for the RKKY interaction is proportional to the de Gennes factor $(g_J - 1)^2 J(J + 1)$ which is identical to the square of the J component of the total spin moment S (10). The present CePd₃S₄ and GdPd₃S₄ have the same magnetic transition temperatures (T = 5.8 K), although the spin momentum (S = 1/2) for the Ce³⁺ ion is smaller compared with that (S = 7/2) for the Gd³⁺ ion. The magnetic transition temperature for the Ce³⁺ compound should be quite smaller than that for the Gd³⁺ compound. So the RKKY interaction is not so strong. According to our X-ray structural refinement, the Gd³⁺ ion has six neighboring Gd³⁺ ions at a distance of 6.6518 Å and this distance is too far to consider the dipole-dipole-interaction-type direct interaction between rare-earth ions. Consequently, the linear R-S-R superexchange interaction is considered to be dominant in RPd_3S_4 .

REFERENCES

- 1. D. A. Keszler and J. A. Ibers, Inorg. Chem. 22, 3366 (1983).
- D. A. Keszler, J. A. Ibers, and, M. H. Mueller, J. Chem. Soc., Dalton Trans. 2369 (1985).
- M.-L. Doublet, E. Canadell, and M.-H. Whangbo, J. Am. Chem. Soc. 116, 2115 (1994).
- M. Wakeshima, T. Fujino, N. Sato, K. Yamada, and H. Masuda, J. Solid State Chem. 129, 1 (1997).
- N. Sato, M. Wakeshima, H. Masuda, K. Yamada, and T. Fujino, *High Temp.-High Pressures* 29, 113 (1997).
- K. R. Lea, M. J. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
- S. Noguchi, K. Okuda, Y. Takigawa, M. Yamada, M. Honda, and M. Date, J. Phys. Soc. Jpn. 56, 722 (1987).
- 8. C. Kittel, Solid State Phys. 22, 1 (1968).
- 9. D. C. Johnston and R. N. Shelton, J. Low Temp. Phys. 26, 561 (1977).
- M. Ishikawa, Ø. Fischer, and J. Muller, *in* "Superconductivity in Ternary Compounds II" (M. B. Maple and Ø. Fischer, Eds.), p 143. Springer-Verlag, Berlin, Heidelberg, New York, 1982.